

IV Semester B.C.A. Examination, September/October 2022 (CBCS) (F+R) (2015 – 16 and Onwards) COMPUTER SCIENCE

BCA 405: Operations Research

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all the Sections.

SECTION - A

I. Answer any ten of the following:

 $(10 \times 2 = 20)$

- 1) What is Operations Research?
- 2) Write the standard form of linear programming problem.
- 3) Define slack and surplus variable.
- 4) What are transportation problems?
- 5) Define basic feasible solution and optimum solution in transportation problems.
- 6) What are the different methods of solving assignment problems?
- 7) How do you convert maximization problem to minimization for solving assignment problems?
- 8) Explain Fulkerson's rules.
- 9) Define optimistic time and pessimistic time.
- 10) What are the applications of PERT/CPM?
- 11) Define saddle point and value of the game.
- 12) What are the different methods available to solve games with mixed strategies?

SECTION - B

II. Answer any four of the following :

 $(4 \times 10 = 40)$

13) a) Explain phases of operations research.

b) A company produces two types of leather belts, type-A and type-B. Profits on two types of belts are Rs. 40 and Rs. 30 respectively per belt. Each belt of type-A requires twice as much time required for a belt of type-B and the company could produce 1000 belts per day. But the supply of leather is sufficient only for 800 belts per day. Belt of type-'A' requires a fancy buckle and only 400 fancy buckles are available for this, per day. For belt of type-B, only 700 buckles are available per day. Formulate the problem as LPP.

P.T.O.

- 14) a) Explain the steps involved in graphical solution to LPP.
- 5

b) Solve the following LPP by graphical method:

5

Maximize,
$$z = 2x_1 + 3x_2$$

Subject to $2x_1 + x_2 \le 12$
 $x_1 + 3x_2 \le 15$

- $x_1, x_2 \ge 0.$
- 15) Determine the initial basic feasible solution to the following transportation problem using
 - a) North-West Corner Method

4

b) Vogel's Approximation Method.

0

			Destii	nation	3000	Supp
		1	2	3	4	
	1	21	16	15	3	11
Source	2	17	18	14	23	13
	3	32	27	18	41	19
Demand	74.0	6	10	12	15	

16) a) Explain Hungarian method for solving assignment problem.

5

 Find the optimal assignment schedule for given table with cost of each job on each machine.

5

Machine

		W	X	Υ	Z
	A	18	24	28	32
Job	B	8	13	17	18
	Č	10	15	19	22

17) The following table gives the list of activities and duration in hours:

10

Job	1 – 2	1 – 3	1 – 4	2 – 5	3 – 4	3 – 7	4 – 5	4 – 6	5 – 6	4 – 7	6 – 7
Duration	20	24	8	20	16	24	0	18	0	4	12

- 1) Draw the arrow diagram.
- For each activity calculate early start and early finish time. Latest start and latest finish time.
- 3) Calculate Total Float (TF) and Free Float (FF).

18) a) Explain pay off matrix and strategy.

5

b) Solve the following game. Find the optimal strategy of Player A and Player B.

5

		Player B			
		1	11	111	
	1	-3	-2	6	
Player A	11	2	0	2	
	111	5	-2	-4	

SECTION - C

III. Answer any four of the following:

 $(4 \times 10 = 40)$

19) Solve the following LPP by simplex method:

10

Maximize,
$$z = 3x_1 + 2x_2 + 5x_3$$

Subject to $x_1 + 4x_2 \le 420$
 $3x_1 + 2x_3 \le 460$
 $x_1 + 2x_2 + x_3 \le 430$.

20) a) Explain the steps involved in matrix-minima method.

5

b) Solve the following transportation problem by Least Cost Method.

1		T	o		Supply
	10	20	5	7	10
	13	9	12	8	20
Erom	4	5	7	9	30
From	14	7	1	0	40
41	3	12	5	19	50
Demand	60	60	20	10	-

b) Solve the transportation problem using MODI method.

- 21) a) Write the difference between transportation problem and assignment problem.

22) a) Find the optimal assignment for the following problem:

	Α	В	C	D
W	41	72	39	52
X	22	29	49	65
Υ	27	39	60	51
Z	45	50	48	52

b) Write the difference between PERT and CPM.

5.

5

23) a) Explain the different phases of project-scheduling by PERT/CPM.

5

b) Draw the network diagram for the following data:

5

Job	Predecessor			
Α	_			
В	1 - 2			
С	Α			
D	Α			
Е	B, C			
F	Α			
G	F			
Н	D, E			
1	G, H			
J	G, H			
K	G, H			
L	J, K, L			
М	J, K, L			
N	K, J			

24) Use the dominance principle to solve the following game.

10

Player B