VISHWACHETHANA PU COLLEGE, ANEKAL **IV PREPARATORY JANUARY 2025**

	PHYSICS	(33)	•
Time: 3 HOURS	<u>II PŲ</u>	<u>C</u>	TOTAL MARKS: 70
<u>General Instructions</u> 1. All parts A to D are compulsory. Pa	art. E is only for y	isually challenged et	udante
2: For Part – A questions, first written			
3. Answers without relevant diagram		•	
4. Direct answers to numerical proble			
marks.	ema wundui reiei	am jormuta ana aeta	nea sommons wat not carry any
mario.			
	PART-	- A	
I. Pick the correct option among the fou			ollowing questions: 15×1=15
1. The S.I. unit of electric charge is			
(A) coulomb metre (B) coulomb	b per metre	(C) coulomb	(D) per coulomb
2.The angle between equipotential surfa	ace and electric	field is	
(A)90° (B)0°		(C)180°	(D)45°
3. Statement-I: The resistivity of metals	s increases with	increase in tempera	iture.
Statement-II: Increasing the temperat	ture of metals ca	auses more frequent	collisions of electrons.
(A) both I and II are true and II is the	correct explana	tion of I.	
(B) both I and II are true but II is not	•		
(C) I is true but II is false.			
(D) both I and II are false.			
(2) 0011 1 1111 11 110			
4.A moving coil galvanometer can be co	onverted into a	voltmeter by connec	eting
(A) a low resistance in parallel with g		, comments by commen	6
(B) a low resistance in series with gal			
(C) a high resistance in parallel with a			
	-		•
(D) a high resistance in series with ga	iivanometer.		
5. When a bar magnet is suspended freel	lv. it points in th	ne direction of	•
	north-south		
• • • • • • • • • • • • • • • • • • • •	northwest-soutl	ıwest	
(2)(D)			
6. The energy stored in an inductor of in	ductance L in e	stablishing the curre	ent I in it is
(A) ½ LI (B) LI ²	(C) LI	(D) ½ LI	

7. The direction of current induced	in the loop 'abc' shown	in the figure is		
(A) along 'abc' if I is increasing		1		
(B) along 'abc'if I is decreasing			- Vi	
(C) along 'acb 'if I is increasing		I a	_J\c	
(D) along 'acb' if I is constant				
3. An ideal step-up transformer dec	reases			
(A) current (B)vc	oltage (C) pov	wer (I)frequency	
9. The displacement current is due	to			
(A) flow of electrons	(B) flo	w of protons		
(C) changing electric field		(D) changing magnetic field		
10. An object of finite height is place	ced in front of a concave	mirror within its	focus. It forms	
(A) a real enlarged image		(B) a real diminished image		
(C) a virtual enlarged image		(D) a virtual diminished image		
11. A beam of unpolarised light of	intensity I_0 is passed thro	ough a pair of pol	aroids with their pass-axe	
inclined at an angle of θ . The in	tensity of emergent ligh	t is equal to		
(A) $I_{0} \cos^{2} \theta$ (B) I	$_{0}\cos\theta$ (C) I	$\cos \theta$ (D) I	$_{0}$ $\cos^{2}\theta$	
		2		
12. Emission of electrons from a m	etal surface by heating it	t is called		
(A) photoelectric emission		(B) thermionic emission		
(C) field emission		(D) secondary emission		
13. When alpha particles are passed	d through a thin gold foil	l, most of them go	undeviated because	
(A) most of the region in an ator	m is empty space			
(B) alpha particles are positively	charged particles			
(C) alpha particles are heavier p	particles			
(D) Alpha particles move with h	igh energy			
14. Nuclei with same atomic numb	er are called			
(A) isotopes (B) is	sobars (C) iso	omers (D) isotones	
15. The column-I is the list of mate	erials and the column-II,	the list of energy	band gaps Eg.	
Identify the correct match.				
	Column-I	Column-II		
	(i) conductors	(a) $E_g < 3 eV$		
	(ii) insulators	(b)E = 0 eV		

Column-I	Column-II	
(i) conductors	(a) $E_g < 3 eV$	
(ii) insulators	$(b)E_g=0 eV$	
(iii) semiconductors	$(c)E_g > 3 eV$	

II. Fill in the blanks by choosing appropriate answer given in the bracket for ALL
the following questions: $5 \times 1 = 5$
(photon, polar, zero, infinite, phase, phasor)
16. A molecule possessing permanent dipole moment is calledmolecule.
17. The net magnetic flux through any closed surface is
18. A rotating vector used to represent alternating quantities is called
19. A wave front is a surface of constant
20.In interaction with matter, light behaves as if it is made up of packet of energy called
PART-B
III. Answer any FIVE of the following questions: $5 \times 2 = 10$
21. State and explain Gauss's law in electrostatics.
22. Define drift velocity and mobility of free electrons in conductors.
23.A long air-core solenoid of 1000 turns per unit length carries a current of 2 A. Calculate the magnetic
field at the mid-point on its axis.
24. Give the principle of AC generator. Why is a current induced in an AC generator called alternating
current?
25. Write any two uses of ultraviolet radiations.
26. Name the objective used in
a) refracting type telescope and
b) reflecting type telescope.
27. Write the two conditions for the total internal reflection to occur.
28. Name the majority and the minority charge carriers in n-type semiconductor.
PART-C
IV. Answer any FIVE of the following questions: $5 \times 3 = 15$
29. Write any three properties of electric field lines.
30. Obtain the expression for the effective capacitance of two capacitors connected in parallel.
31. What is Lorentz force? Write its expression and explain the terms.
32. Write any three differences between diamagnetic and paramagnetic materials.
33. Describe an experiment to demonstrate the phenomenon of electromagnetic induction using a bar magne and a coil.
34. Give any three results of experimental study of photoelectric effect.
35. Write the three postulates of Bohr's atom model.
36. Find the energy equivalent of one atomic mass unit, first in joule and then in MeV.
Given: $1u = 1.6605 \times 10^{-27} \text{ kg}$, $e = 1.602 \times 10^{-19} \text{ C}$ and $e = 2.9979 \times 10^8 \text{ ms}^{-1}$.

,

- 37. Derive the expression for the electric field at a point on the axis of an electric dipole.
- 38. Two cells of different emfs and different internal resistances are connected in series. Derive the expression for effective emf and effective internal resistance of the combination.
- 39. Derive the expression for the magnetic field at a point on the axis of a circular current loop.
- 40.a) Two coherent waves of a constant phase difference undergo interference. Obtain the expression for the resultant displacement. (3)
 - b) Write the conditions for constructive and destructive interference in terms of phase difference. (2)
- 41. What is a rectifier? Explain the working of a full-wave rectifier using a neat circuit diagram. Draw its Input-output waveforms.

VI.Answer any TWO of the following questions:

 $2 \times 5 = 10$

- 42. a) Calculate the potential at point P due to a charge of 400nC located 9cm away.
 - b) Obtain the work done in moving a charge of 2nC from infinity to the point P. Does the answer depend on the path along which the charge is moved?
- 43. In the following network, find the current I₃.

- 44. An AC source of frequency50Hz is connected in series with an inductor of 1H,a capacitor of 90μF and a resistor of 100Ω. Does the current leads or lags the voltage? Calculate the phase difference between the current and the voltage.
- 45.An equilateral prism is made of glass of unknown refractive index. A parallel beam of light is incident on a face of the prism. The angle of minimum deviation is 40°. Find the refractive index of the material of the prism. If the prism is placed in water of refractive index 1.33, find the new angle of minimum deviation of a parallel beam of light.